Statistics, analysis and conclusions from 250,000 blower door tests, including ventilation types

With lower air leakage in modern homes, ventilation of homes has become more important than ever before. It seems however that we are getting it very wrong. A lack of ventilation can cause building sickness, with degradation of the physical building and also poor air quality which has a big impact on the occupants themselves. Our statistics show that designers and contractors are still not getting it right, leaving us with a generation of poorly ventilated housing stock.

Influence of air quality performance requirements on the demand of energy

The aim of this paper is to show the effects of variable ventilation rates on the demand of energy and air quality in dwellings, and how airtightness and wind affect this relation. It is interesting to estimate the relation between the air ventilation rate and airtightness of dwellings which makes the dwelling to be under-pressure in order to avoid infiltrations.

Optimization of the airtightness and the flow rate of air in nearly zero energy buildings

The control of heat losses, inwards/out, in nearly zero energy buildings is of high importance. The transmission losses through the building envelope are easily reduced using larger amounts of insulation. Calculation of the impact of this action on the total energy demand of the building, is quite standard. It’s however much more difficult to determine the efficiency of actions to increase the airtightness of the building and the influence of the ventilation system.

Numerical evaluation of the airtightness impact on airflow pattern in mechanically ventilated dwellings in France

The objective of this paper is to assess the impact of the envelope airtightness on airflow patterns for single detached dwellings depending on the ventilation system.

Infiltration and Ventilation in a Very Tight, High Performance Home

The Net Zero Energy Residential Test Facility (NZERTF) was constructed at the National Institute of Standards and Technology (NIST) to support the development and adoption of cost-effective net zero energy designs and technologies. Key design objectives included providing occupant health and comfort through adequate ventilation and reduced indoor contaminant sources.

Laboratory investigation on the durability of taped joints in exterior air barrier applications

In timber frame construction in Europe air barrier systems are typically realised at the interior side of the building envelope. Yet in some applications such as renovation projects it can be easier to provide the air barrier layer at the exterior. This way, the air barrier system – typically board materials in which the joints are sealed with tape – is exposed to outdoor weather conditions. The aim of the present article is to investigate the impact severe climatic conditions on the airtightness of typical taped joints.

Airtightness Data and Characteristics of 752 Residential Units of Reinforced Concrete Buildings in Korea

This paper presents airtightness data measured for about 752 units of high-rise reinforced concrete buildings (apartment buildings) that have been recently constructed within five years in Korea. Target buildings were mainly constructed by using reinforced concrete walls/floors, and dry/wet walls were installed between units. Airtightness data of residential units were analysed based on values of ACH50 and air permeability.

Airtightness and indoor air quality in subsidised housing in Spain

Over three million subsidised dwellings were built in Spain between 1940 and 1980. Most of these buildings are now obsolete and fail to comply with thermal comfort and ventilation standards. A building's existing energy performance, including its airtightness, should be determined prior to conducting low-energy refurbishment, for those factors, particularly the latter, impact thermal comfort, energy demand and indoor air quality (IAQ) fairly heavily.

Field trialling of a new airtightness tester in a range of UK homes

A new low pressure ‘quasi-steady’ pulse technique for determining the airtightness of buildings has been developed further and compared with the standard blower-door technique for field-testing a range of typical UK homes. The reported low pressure air pulse unit (APU) has gone through several development stages related to optimizing the algorithm, pressure reference and system construction. The technique, which is compact, portable and easy to use, has been tested alongside the standard blower-door technique to measure the airtightness of a range of typical UK home types.

Airtightness Quality Management Approaches in France: end and birth of a scheme. Previous and new schemes overview and analysis

Since 2006, the French Energy Performance regulation, named RT, has been allowing two ways to justify building airtightness: either with a measurement or with the application of a quality management approach. The quality management approach certification is managed by the French Ministry in charge of construction, for which it set up a specific expert committee to assess quality management approaches. Since 2012, the justification has been compulsory for residential buildings. This obligation led to a more systematic use of certified quality management approaches.

Pages